Brushing up on Linear Algebra

Hermitian Matrix

Square matrix with complex entries that is equal to its own conjugate transpose.


[3 2+i; 2-i 1]

Positive Definite Matrix

A n x n real matrix M is positive definite if z’Mz > 0 for all non-zero vector z with real # entries.

z*Mz > 0 (for complex or Hermitian Matrix M)


[z_0 z_1] [1 0; 0 1] [z_0; z_1]  = z_0^2 z_1^2

Therefore, [1 0; 0 1] is positive definite


Non-zero vectors that remain parallel to the original vector no matter what matrix (read: transformation) is applied to them.

Av = lamba *v, where lambda is the eigen value of A corresponding to v.

Cholesky Decomposition

Decomposition of a Hermitian, positive-definite matrix into product of lower triangular matrix and its conjugate transpose (take the transpose then negate imaginary parts but not real part). Analogous to taking a square root of a number.

A = LL*, where L is a lower triangular matrix with positive diagonal entries.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s